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INTRODUCTION 

As the calendar turned to 1992, the conditions that had dominated 
military planning for almost half a century came to an end with 
the dissolution of the Soviet Union.  In anticipation of a world that 
required less military manpower, the United States cut its active 
duty forces by about a third in the decade that followed [1].  This 
was often referred to as the “peace dividend.”  Unfortunately, 
while the nature of the threat changed, the world arguably 
became a more dangerous place.  In fact, Beckett [2] states that:  
“Between 1990 and 1996 there were at least 98 [significant] 
conflicts inflicting 5.5 million deaths, but only seven of these were 
waged between recognized states.”  

The challenges facing our armed forces are fundamentally 
different than they were just over a decade ago.  Consequently, 
our forces are undertaking an ambitious effort to fundamentally 
change.  As Secretary of Defense Rumsfeld [3] states:  “Whatʹs 
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taking place in the conflict [Afghanistan], in the global war on 
terrorism, and the distinctively new threats weʹre facing, 
[provides] the impetus to transformation.”  Similarly, we need to 
transform an analysis infrastructure built to analyze a well 
studied and stable situation.  Specifically, we need agile tools and 
analysis methods that allow us to quickly gain and effectively 
communicate insights into dynamic, asymmetric situations.  In 
particular, to better assist senior decision-makers in structuring, 
equipping, and employing military forces to face the new threat 
we need to understand more about the intangible human 
elements of combat (leadership, morale, unit cohesiveness, etc.) in 
medium and low intensity conflicts involving adaptive 
adversaries.  Towards that end, the Marine Warfighting 
Laboratory’s Project Albert seeks to exploit the advances in 
computing power and new technologies to “provide quantitative 
answers…to important questions facing military decision-
makers,” Brandstein [4].   

Under Project Albert’s guidance, many diverse organizations have 
built a series of relatively simple models, along with data farming 
and visualization environments in which they can be explored.  
These models, by design, are fast-running, flexible, and easy to 
use.  They strive to include only that detail which is absolutely 
necessary to capture the “essence” of the problem.  Furthermore, 
these models are typically used in an exploratory manner.  That is, 
the models assist us in reasoning about extremely complex 
systems and processes by helping generate hypotheses or 
assessing the consequences of assumptions.  

Most of Project Albert’s models are agent-based simulations.  
While Project Albert’s simulations are small when compared to 
traditional Department of Defense (DoD) models, they still 
contain scores of variables an analyst may desire to explore.  To 
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do so efficiently requires experimental designs (the specification of 
the input variables) that allow us to efficiently sample from the 
vast number of potentially interesting input combinations.  
Furthermore, techniques that help us uncover relationships in the 
output data are also vital for effective exploration.  In this paper, 
we highlight two methods that we have found particularly helpful 
in a series of explorations on a variety of models and scenarios—
see Lucas et al. [5] and Sanchez et al. [6].  They are applied in a 
study of guerrilla combat involving a skirmish that author Ipekci 
experienced.  The first method, dealing with generating inputs, is 
Latin hypercube designs (see [7]).  The second method is 
classification and regression trees (CART)—which are good at 
uncovering relationships in large data sets (see [8]).   

The outline of this paper is as follows.  The next section describes 
the guerilla infiltration scenario we investigate.  This is followed 
by sections that describe the model (MANA) that we use and the 
experimental design (a specially constructed Latin hypercube).  
The subsequent section summarizes the results with CART and 
multiple additive regression tree (MART) models.  A concluding 
section discusses the main findings.  

THE SKIRMISH 

One of the most prominent examples of guerrilla forces fighting 
against a conventional force is the recent 15-year conflict between 
Turkey and the Kurdistan Workers Party (PKK).  The Marxist-
Leninist PKK was formed in 1974, with the goal of establishing a 
Kurdish state in southeastern Turkey.  The PKK is one of 34 
organizations on the U.S. State Department’s list of designated 
foreign terrorist organizations [9].  In Turkey’s conflict with the 
PKK, approximately 100,000 Turkish soldiers fought continuously 
against a PKK force of about 10,000.  The conflict has claimed 
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more than 30,000 lives.  While the majority of casualties have been 
civilians, approximately 4,000 Turkish soldiers have been killed.  
Author Ipekci served in this conflict as a tank platoon commander 
in the southeast of Turkey.  His experiences motivated this case 
study. 

In September 1999, Lieutenant Ipekci was ordered to move his 
platoon in order to secure a hilltop along Turkey’s border with 
Iraq.  The platoon was composed of two tanks, two armored 
combat vehicles, and 11 infantrymen.  Their mission was to take 
up a position on the hilltop to protect the area against terrorist 
activities and interdict forces seeking to enter Turkey.  Given the 
hilltop’s strategic value they knew that they were a desirable 
target for PKK forces.  

A few weeks later, before dawn one morning, 11 terrorists 
equipped with light infantry weapons attacked.  The attack began 
when a two-man reconnaissance team initiated heavy fire upon 
the platoon in an attempt to distract their attention.  The 
remaining nine attackers split into two squads (of size four and 
five) and attempted to infiltrate the platoon’s position from two 
directions shortly after the firing commenced.  The skirmish lasted 
for almost half an hour.  Just before daybreak, after losing four 
combatants, while inflicting only minimal losses on the platoon 
(two injured soldiers and minor equipment damage), the attackers 
withdrew. 

This type of engagement increasingly occurs around the globe in 
situations where lightly armed guerrillas use speed and surprise 
to battle superior conventional forces.  As such, we use it as a 
vehicle to examine how things might have changed if Ipekci’s 
platoon was deployed differently, there were more attackers, they 
were more capable (i.e., had better weapons, combat effectiveness, 
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unit cohesion, or aggression), and other questions.  In addition, 
any real engagement is a single realization of an event that might 
have substantial variability associated with it.  That is, in an 
otherwise identical scenario, events may unfold quite differently 
due simply to random chance.  Therefore, when determining the 
lessons learned from historical battles it is important to 
understand the range of possible outcomes that could have 
occurred (or could happen in similar situations).   

SIMULATING THE ENGAGEMENT IN MANA 

The skirmish described in the previous section was replicated in 
the agent-based simulation Map Aware Non-uniform Automata 
(MANA), see Figure 1.  As an agent-based simulation, the agents 
(software objects representing infantry soldiers, platoon 
commanders, tanks, etc.) make decisions autonomously about 
where to move, whom to shoot at, etc.  These agents are aware of, 
and interact with, their local environment through relatively 
simple internal decision rules.  The rules determine an agent’s 
“personalities,” such as their desires to move toward or away 
from a destination, alive and injured friendly agents, and enemy 
agents.  These traits are often used to model so-called intangibles, 
such as aggressiveness.  Additionally, variables can be defined 
that affect group behavior—such as the difference in forces 
required for an agent in a unit to want to advance towards an 
enemy agent.  An agentʹs physical characteristics include their 
abilities to sense, communicate, and engage other agents.  See 
Lauren and Stephen [10] for a detailed description of MANA.   

From among the available simulations, MANA was selected for 
the following reasons.  MANA’s user interface allows one to easily 
construct and visually assess new scenarios.  Individual battles of 
this size take only a few seconds to simulate on a PC.  This, 



 
 
combined with the fact that MANA is resident at super computing 
centers (specifically, the Maui High Performance Computing 
Center (MHPCC) and the Mitre Corporation in Woodbridge, 
Virginia), enables us to generate hundreds of thousands of 
simulated battles.  Critical functional capabilities that MANA 
affords include the ability to influence agent-movement with  
way-points, event-driven personality changes (e.g., an agent’s 
desire to move towards the enemy can be programmed to change 
if he is shot at), and an internal situational map that allows agents 
to have a memory of enemy contacts. 

 

 
Figure 1: MANA Infiltration Scenario 
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It is important to emphasize that MANA models physical events 
(e.g., detections and engagements) with low resolution.  
Furthermore, as with most combat simulations, the differences 
between MANA’s outputs and the real world have not been 
quantified.  Thus, we do not want to put too much credibility in 
specific output values.  Rather, we are using our exploration to 
glean insights whose veracity needs to be externally tested—
perhaps with real battle data or warfighting experiments.  
Moreover, we see these results as one part of the operational 
synthesis process.  That is, the process of combining the 
information obtained from a family of diverse analytical tools to 
provide the most compelling analyses—see Brandstein [4].    

DESIGNING THE COMPUTATIONAL 
EXERIMENTS 

This section describes the variables that are selected for 
exploration to address the issues discussed above.  Manual trial 
and error on hundreds of MANA input variables indicated that 
we should explore more than a score of them.  Of course, if we 
wish to be able to measure interactions (e.g., synergistic effects) 
among variables they need to be varied simultaneously.  With so 
many variables to explore, a gridded design is infeasible.  Thus, 
we chose to use a specially constructed Latin hypercube.  Since we 
have found these designs particularly useful in high-dimensional 
explorations we detail their construction.  

MANA Variables Selected for Exploration 

Our exploration varies a total of 24 factors.  Two are simple 
excursions from the baseline scenario.  They are another Blue force 
(the defending tank platoon) disposition (to see if this affects 
results) and a second Red force (the attacking terrorists) attack 
plan (the new one utilizes three infiltration teams).   
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We explore the remaining 22 variables in all three scenarios (the 
base line and two excursions).  Generally, they fall into the 
following classes.  Nine of the input variables define the Red 
force’s physical abilities (number, stealth, lethality, and mobility).  
Three parameters control individual Red agents’ propensities to 
stay with their comrades (alive and injured) and move towards 
Blue agents—the latter represents their aggressiveness.  Two 
additional Red force variables control which Blue targets (infantry 
or vehicles) the Red agents prefer to shoot at.  Two more variables 
constrain the Red agents’ group behavior.  Specifically, they limit 
the size of Red groups and the difference in manpower (between 
Red and Blue) required for a Red agent to advance towards the 
Blue force.  Finally, we vary a total of six parameters that define 
the Blue force’s capabilities.  These six relate to the Blue agents’ 
stealth, sensing ability, and lethality.  For a specific description of 
the variables and their levels see Ipekci [11].   

Our measures of effectiveness are the proportion of Blue agents 
killed and the proportion of Red agents killed.  Clearly, we want 
to minimize the former while maximizing the latter. 

Latin Hypercube Designs  

The designs we use are variants of the basic Latin hypercube 
design.  We chose this family of designs because they are easy to 
construct in a broad range of situations and they generate results 
that provide flexibility in fitting models where there is 
considerable a priori uncertainty about the forms of the response 
surfaces—as in our example.  Specifically, Latin hypercubes allow 
us to screen a large number of variables for significance, while 
simultaneously providing us with the ability to fit complex 
models (including non-parametric) on the most important 
variables.  
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In Latin hypercube sampling, the input variables are treated as 
random variables with known distribution functions.  For each of 
k input variables, labeled Xi, for i = 1, 2,…, k, “all portions of [Xi’s] 
distribution [are] represented by input values” by dividing its 
range into “n strata of equal marginal probability 1/n, and 
[sampling] once from [within] each strata” (McKay et al. [7]).  For 
each Xi, the n sampled input values are assigned at random to the 
n cases—with all n! possible permutations being equally likely.  
This determines the column in the design matrix for Xi and is 
done independently for each of the k input variables.  A great 
strength of basic Latin hypercubes is that they are easy to generate 
for all k and n.   

We illustrate the construction of a basic Latin hypercube when 
there are five input variables (i.e., k = 5) that we wish to explore 
over the region [-1, 1]5—and must do so with only n = 11 samples.  
In our explorations, we sample each variable uniformly (i.e., their 
input distribution is a discrete uniform).  Thus, all of the five 
variables will take each of the values (-1, -.8, -.6,…,1) exactly once 
in the 11-run design.  The first input combination is selected by 
independently sampling once (with all input values being equally 
likely) from each variable—see the second row (corresponding to 
Run 1) in Table 1.  The second input combination is obtained by 
independently sampling from the 10 remaining input values for 
each variable.  This creates Run 2.  We continue this, until Run 11, 
where we use the value that is left over for each input variable.  
The result is that each variable is uniformly sampled over its 
range.  In this illustration we have scaled all of the input variables 
so that their domain is [-1, 1].  The same process applies to any 
rectangular region if the experimenter wants to uniformly sample 
each factor.  Moreover, one need not limit themselves to uniform 
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distributions.  If there is a need to sample some regions more 
heavily than others, non-uniform distributions should be used. 

 

Run X1 X2 X3 X4 X5 
1 0.2 -0.8 -0.4 -0.2 -0.8 
2 0 0.6 0.2 0 -0.6 
3 -0.8 1 -0.8 0.6 1 
4 -1 -1 0.4 -0.8 0.2 
5 0.4 -0.4 0 0.2 0.8 
6 0.6 0 0.8 -1 0.4 
7 -0.4 0.4 -0.2 -0.6 -1 
8 -0.6 -0.6 -1 0.8 -0.4 
9 0.8 -0.2  1 0.4 0.6 
10 1 0.8 -0.6 1 0 
11 -0.2 0.2 0.6 -0.4 -0.2 

Table 1: Example Latin Hypercube Design Matrix 

 

Figure 2 shows the two-dimensional projections of all 10 pairs of 
input variables in our example.  We see that by using uniform 
distributions the input points are scattered throughout the region 
to be explored.  If we used a traditional two-level, full-factorial 
(also known as a gridded) design all of these points would be in 
the corners of the panels.  A three-level, full-factorial design adds 
a point to the centers of the panels, as well as one in the middle of 
each of the panels’ four boundaries.  This design, with three levels 
for each factor, requires 35 (i.e., 243) runs.  Clearly, Latin 
hypercubes give us much better space-filling than traditional 
gridded designs.   

This Latin hypercube is just one of many possible designs that 
could have been generated—depending on the random sampling.  
In this example, one concern is correlations between the input 



 
 
variables.  In fact, the correlation between X3 and X4 is −.6.  
Correlations between input variables can reduce the effectiveness 
of many analytic procedures—such as regression and CART.  
When the number of input combinations (n) is sufficiently large 
with respect to the number of factors (k), there will likely be 
relatively small correlations between columns in the design 
matrix, see [5] and [12]. When this is not the case, special Latin 
hypercubes (even ones that are orthogonal—i.e., with zero 
correlations between columns of the design matrix) may exist.   
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Figure 2: Scatter Plot of All Pairs of Input Variables From Table 1 
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In our analyses we use the recently developed nearly orthogonal 
Latin hypercubes of Cioppa [13].  These designs are nearly 
orthogonal—with a maximum pairwise correlation between 
columns of the design matrix of less than .03.  Furthermore, they 
also tend to have much better space-filling properties than a 
randomly generated basic Latin hypercube.  For each of the three 
scenarios, we simulate 513 input combinations of the 22 variables.  
For each of these, 100 replications are made.  Thus, for each 
scenario 51,300 engagements are simulated. 

EXPLORING THE DATA 

Making sense of the outputs from hundreds of thousands of 
simulated battles is quite a challenge.  For analysts, this is a good 
problem to have—much better than having too little data.  One 
advantage of the nearly orthogonal Latin hypercubes we use is 
that they provide tremendous analytic flexibility.  In fact,  
Ipekci [11] analyzed the data graphically using the software 
packages S-Plus, Clementine, Ggobi, and Netica.  Analytic 
methods applied to the data range from the simple sign test to a 
variety of advanced statistical techniques, including cluster 
analysis, neural networks, regression trees, linear regression, and 
Bayesian networks.  In this section, we summarize our findings on 
the baseline scenario that we obtain with regression trees.  We 
focus on regression trees because we have found them 
particularly valuable in finding structure in large simulation 
output data sets and believe that tree models, as a whole, are 
underutilized by military operations research analysts.  
Furthermore, the results are readily interpretable.   

Red Killed 

This subsection looks at the proportion of Red killed as a function 
of the 22 factors discussed in the baseline scenario using tree 
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models.   Regression trees are hierarchical tree models that show 
structure in the data by sequentially partitioning it into 
homogeneous subsets through a series of simple bifurcation rules.  
One reason trees are becoming popular in data exploration is that 
they automatically generate models without the necessity of the 
user specifying the basic form of the relationships between the 
predictors and the response—for example, a linear, nonlinear, or 
additive model.  In addition, trees do not require distributional 
assumptions—thus, transformations are not needed.  In fact, the 
results are invariant to monotone re-expressions of the predictors.  
Moreover, interactions between variables are naturally obtained 
as the tree is built.  Furthermore, trees are robust to outlying data. 

The best way to explain how to construct and interpret a 
regression tree is by example.  We now do so with the regression 
tree fit to the proportion of Red killed data—see Figure 3.  
Initially, all of the observations start in a single group or ʺnode.ʺ  
A measure of the heterogeneity of the node’s responses (called 
impurity) is made.  If the all of the responses are the same the 
impurity is zero.  Our impurity measure (using S-plus [14]) is the 
sum of the squared residuals.  We want to partition the data into a 
set of homogeneous nodes one split at a time.  This is done by 
considering every possible split of the form “Xi < a” (where Xi, for 
i = 1,2,…,22, are the independent variables and a is a real number).  
From among all of these, the split that gives the smallest sum of 
the impurities of the two child nodes is made.  In this case, the 
data are split into two sets, one containing the observations such 
that “Red.Stealth ≤ 123.5” and the other containing the remaining 
observations, i.e., “Red.Stealth > 123.5”.  

As we go down the tree, each of the two child nodes are then 
candidates for splitting—until a stopping condition is met.  
Specifically, a given node will split if it contains enough 



 
 
observations (as determined by the user) and the split improves 
upon the tree’s purity by a specified amount.  For the 
“Red.Stealth > 123.5” node, the data is partitioned into sets by the 
“Red.Movement ≤ 28” and “Red.Movement > 28” rules.  These 
are terminal nodes—i.e., they are not split.  The model then 
estimates, for example, that if {“Red.Stealth > 123.5” and 
“Red.Movement > 28”} then the proportion of Red killed is 
.10450. 
 

|
Red.Stealth<123.5 

Red.Movement<28 Red.Stealth<108.5 

Red.Movement<77.5 Red.Num<16.5 
0.8812 0.1045

Red.Movement<105.5 Recon.Stealth<2.5 Red.Stealth<115.5 
0.9710

Red.Movement<100.5 Red.Stealth<120.5 
0.9600 0.1578 0.7348 0.5175

Red.Movement<103.5 
0.9331 0.9312 0.7002

Red.Movement<104.5 
0.0834

 
Figure 3:  Regression Tree for the Proportion of Red Agents Killed 

0.4586 0.8418

 

Our fitted tree model partitions the data into 13 sets—i.e., terminal 
nodes.  Only four of the 22 variables appear in the tree.  They are: 

Red.Stealth:  This parameter affects the probability that an agent 
can be seen—with higher values meaning the (Red infiltration) 
agent is less likely to be detected.  
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Red.Movement:  This parameter affects the speed of (Red) 
agents—with greater numbers meaning faster agents.  

Red.Num:  This is the total number of Red agents in the 
infiltration teams.  

Recon.Stealth:  This is the stealth of the two Red reconnaissance 
agents.  

The tree fit is quite good, with a residual mean deviance (which is 
the sum of the squared differences between the data and what the 
model would predict divided by the number of samples) of .006.  
Thus, knowledge of just these four variables is enough to 
accurately estimate the proportion of Red killed.  Also, we obtain 
quite good discrimination in the response—as the mean losses in 
the 13 terminal nodes range from below .1 to above .9.  Note:  
Several of the nodes split on Red.Movement near the value of 100.  
It turns out that this is a function of a discontinuity in MANA’s 
movement algorithm—see Wolf [15].  Another note of interest is 
that none of the variables associated with the Blue force appears 
in the tree. 

What is the importance of the 18 variables that do not appear in 
the tree?  To answer this we use multiple additive regression trees 
(MART).  MART models are designed to predict.  They consist of 
a series regression trees—hence it is difficult to interpret them.  
However, Hastie et al. [16] provide a heuristic that quantifies the 
relative importance of the 22 predictor variables depending on 
how often they appear in the trees and how much they reduce the 
impurity.  Figure 4 displays the relative importance values for Red 
killed on a scale of zero (of no importance) to 100 (the most 
important).  We see that Red.Stealth and Red.Movement are the 
two most important predictors, followed by Red.Num and 
Recon.Stealth.  Not until the sixth most important predictor do 



 
 
we get a factor associated with the Blue force—in this case the 
single shot probability of kill for Blue infantrymen.  Another 
interesting point is that the Red personality parameters do not 
have much influence on the proportion of Red killed in this 
scenario.  
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Figure 4:  MART’s Relative Importance of the Variables for the Proportion of 

Red Agents Killed 
 

Blue Killed 

Figures 5 and 6 display the regression tree and MART’s relative 
importance values for the 22 predictors on the proportion of Blue 
killed.  Here, seven predictors appear in the regression tree—
which also has 13 terminal nodes.  Once again, all of the tree’s 
predictors are associated with the Red force.  Three of the 
variables, Red.Stealth, Red.Num, and Recon.Stealth were in the 
proportion of Red killed tree.  The four new variables are: 
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Recon.Firing:  This factor controls the range at which Red 
reconnaissance agents can effectively engage Blue agents.  

Recon.Sensor:  This parameter defines the range that Red 
reconnaissance agents are able to detect Blue agents.  

Red.SSKP:  This variable affects the lethality of the Red 
infiltration agents.  

Red.w1:  This parameter determines the Red infiltration agent’s 
propensity to move towards friendly agents (i.e., mass with other 
infiltration agents) when in contact with Blue agents.   

 
Red.Stealth<111.5 

|

Red.SSKP<24 Red.Num<24.5 

Red.Num<9.5 Red.SSKP<45.5 Recon.Stealth<108.5 
0.1003

Red.SSKP<95 Red.Stealth<69.5 Recon.Firing<69.5 
0.14290.04340.0301

Red.w1<19 Recon.Sensor<62.5 
0.60740.1468 0.46250.0422

Red.Num<28 
0.50290.1183 0.5449

 0.3857 0.0030

Figure 5: Regression Tree for the Proportion of Blue Agents Killed 
 

Once again, the most important variable (i.e., first split variable) is 
Red.Stealth.  The mean residual deviance is a little higher in this 
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tree, with a value of .016, and the mean proportions of Blue killed 
range from .03012 to .60740.  In this scenario, the Red force is 
particularly lethal when they are stealthy, there are a large 
number of them, the reconnaissance team has capable sensors, 
and their single shot probability of kill is high. 

We see from MART’s relative importance rankings (see Figure 6) 
that stealth, single shot probability of kill, and the number of Red 
forces are the most important variables.  Once again, it is striking 
that the most important predictors (the top 13 in this case) are all 
associated with the Red force. 
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Figure 6:  MART’s Relative Importance of the Variables for the Proportion of 

Blue Agents Killed 
 

CONCLUSIONS 

Terrorist organizations almost always face conventional forces 
with vastly superior firepower.  Hence, when engaging 
conventional forces terrorists usually resort to guerrilla tactics.  In 
this exploration we use special Latin hypercubes to see how a 
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large number of variables affect Blue and Red losses in a MANA 
scenario based on a guerrilla attack on conventional forces.  
Regression trees help us make sense from the output of over 
150,000 simulated battles.  They reveal that both Blue and Red 
losses depend almost solely on factors associated with the Red 
force—in particular the Red force’s stealth and mobility. 

Strategically, our findings suggest the importance of taking 
actions to inhibit terrorists’ abilities to mass, train, and acquire 
weapons and sensors.  The results also imply that improvements 
in the ability to detect terrorists may offer Blue more in both 
survivability and lethality than enhanced firepower.  This might 
be accomplished through technical means (better sensors) or 
different force mixes (perhaps more reconnaissance elements).  Of 
course, as with all force-on-force combat simulation generated 
hypotheses, their veracity, if possible, should be tested with other 
models, warfighting experiments, and/or examining real data. 
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